Transfer of intensity quantum correlation with twin beams

Hongxin Zou, Shuqin Zhai, Rongguo Yang, Daihe Fan, Jiangrui Gao,* and Junxiang Zhang
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
*Corresponding author: jrgao@sxu.edu.cn

Received March 6, 2007; revised May 10, 2007; accepted May 15, 2007; posted June 7, 2007 (Doc. ID 80755); published July 24, 2007

We demonstrate experimentally a protocol of transferring nonclassical quantum properties using two pairs of quantum-correlated twin beams in the continuous variable regime. The intensity quantum correlation from one twin beam is transferred to two initially independent idler beams with the help of a displacement transformation. It makes two originally independent beams exhibit an intensity quantum correlation of 0.8 dB below shot-noise level. © 2007 Optical Society of America

OCIS codes: 270.2500, 350.0350.

The transfer of a quantum state from one subsystem to another subsystem is a prerequisite for quantum communication. One can transfer a quantum state either by the method of teleportation or through quantum networking. The basic idea behind a quantum network is to transfer a quantum state from one node to another node with the help of a carrier (a quantum channel) such that it arrives intact [1]. Quantum teleportation is a popular example of the transfer of quantum states. The initial unknown state of a quantum system can be transferred to another system with the assistance of the entanglement [2–6]. Recently, the quantum network has been developed extensively by transferring and operating a quantum state between different subsystems [7–9]. In the continuous variable regime, the quantum teleportation of squeezed state [10] and entanglement swapping [11] have been demonstrated experimentally. It is significant for the development of quantum repeater and quantum network. However, they all are measurement and transfer of both quadrature amplitude and quadrature phase of light fields simultaneously. It demands that all the light beams in different subsystems are frequency degenerate and classically coherent for measuring the fluctuations of two quadrature components with a balanced homodyne detection system. Thus the experiment process is very complex.

Unlike the measurement of two quadrature components, only the field intensities are measured for the intensity quantum-correlated twin beam generated by a nondegenerate optical parametric oscillator (NOPO). Although this does not involve the transfer of quantum state for the present protocol, the transferred result has shown nonclassical characteristics.

Since the first reported experimental demonstration of the twin beam [12], its application has been studied extensively both in optical measurement beyond the standard quantum limit [13–15] and quantum key distribution [16–18].

A conditional protocol of transferring quantum correlation in the continuous variable (CV) regime was recently demonstrated [19]. A post-selection, proposed originally in the discrete-variable system, was used. To the best of our knowledge, the unconditional intensity quantum correlation transfer of CVs has not been experimentally accomplished so far. Thus it is still a challenge to realize unconditional quantum-correlation transfer without post-selection. In the present Letter, we will report the experimental realization of intensity quantum-correlation transfer.

The correlation transfer scheme is shown schematically in Fig. 1. Two independent NOPOs produce two pairs of twin beams; each pair of twin beams consists of a signal beam (B1 or B3) and an idler beam (B2 or B4) that are intensity quantum correlated and called quantum-correlated twin beams. Both signal beams B1 (from NOPO1) and B3 (from NOPO2) are detected, respectively (D1, D2), and the photocurrent fluctuations are subtracted to drive the amplitude modulator (AM) for the purpose of displacing the idler beam B4 (with a reference beam and a 99/1 beam split, which can change beam B4 perfectly into B2 in ideal conditions) from NOPO2. G is the system gain of the feedback loop. Considering the general conditions that the light powers and the intensity

![Fig. 1. (Color online) Schematic of experimental setup.](image-url)
quantum correlations of two twin beams are different, we introduce another gain factor g in one way (hereafter detector D1) to balance the currents from D1 and D2. The amplitude fluctuations of beam B4 after modulation at Fourier frequency Ω become

$$\delta p_5(\Omega) = \delta p_4(\Omega) + G(\Omega)[g(\Omega)\delta p_1(\Omega) - \delta p_3(\Omega)], \quad (1)$$

where $\delta p_1 - \delta p_5$ are the amplitude fluctuations of beams B1–B5, respectively, i.e., the fluctuation of the quadrature component that is in phase with the mean field [20]. $G(\Omega)$ and $g(\Omega)$ are the system transfer functions for mediating the fluctuations transfer, and they correspond to gain G and g, respectively.

The intensity noise spectrum of each beam is related to the amplitude fluctuation through

$$S_i(\Omega) = \langle \delta p_i(-\Omega) \delta p_i(\Omega) \rangle, \quad i = 1 - 5, \quad (2)$$

where S_i can be normalized to its shot-noise level (SNL). It means that S_i will be equal to 1 when δp_i is vacuum fluctuation or a coherent state. The quantum correlation of the twin beam can be expressed by the normalized noise spectrum of intensity difference between the twin beam [20]:

$$S_{1-2}(\Omega) = \frac{1}{2} \langle [\delta p_1(-\Omega) - \delta p_2(-\Omega)] [\delta p_1(\Omega) - \delta p_2(\Omega)] \rangle, \quad \text{(3)}$$

$$S_{3-4}(\Omega) = \frac{1}{2} \langle [\delta p_3(-\Omega) - \delta p_4(-\Omega)] [\delta p_3(\Omega) - \delta p_4(\Omega)] \rangle. \quad \text{(4)}$$

At optimum case, the intensity difference noise spectrum $S_{5-2}(\Omega)$ at frequency Ω will reach its minimum value:

$$S_{5-2}^{\text{opt}}(\Omega) = S_{1-2}(\Omega) \left(1 - \frac{S_{1-2}(\Omega)}{2S_A(\Omega)} \right) + S_{4-3}(\Omega) \left(1 - \frac{S_{4-3}(\Omega)}{2S_B(\Omega)} \right), \quad \text{(5)}$$

where $S_{1-2}(\Omega)$ and $S_{4-3}(\Omega)$ are two twin beams intensity difference noise spectra, respectively. They both are less than 1 for quantum-correlated twin beams. S_A and S_B are the intensity noise spectra of single beams from the NOPOs output; it is reasonable to assume that the B1 and B2 noise spectra are the same (S_A) and that B3 and B4 are the same (S_B), respectively. If $S_{5-2}^{\text{opt}} < 1$, beams B2 and B5 are intensity quantum correlated. In general, S_A and S_B are much greater (~10 dB) than the SNL at measurement frequency. The noise spectrum is decided mainly by operation state of the OPO (including the ratio between pump power and OPO threshold, off-resonance of phase, and relaxation oscillation of OPO) [21]. Taking this condition into account, Eq. (5) can be expressed approximately as [22]
beams. The protocol can be used for beams of any wavelength, and there is no limitation of coherence.

J. Gao thanks J. Zhang, T. Zhang, C. Xie, and K. Peng for helpful discussions. This work was supported in part by National Natural Science Foundation of China (Approval 60478008), the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT0516), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (CFKSTIP 705010), Natural Science Foundation of Shanxi Province (20051001), and the Research Fund for the Returned Abroad Scholars of Shanxi Province.

References

