离子跨膜的分子力学研究进展

杨 颖 范英芳 郝鸣鸿
（山西大学分子科学研究所，太原 030006）

摘要 综述了应用分子力学方法研究离子跨膜的近期进展，着重介绍了结合点非对称静态模型的计算方法。这个模型利用一种典型肽-膜蛋白体系的简单几何构型，一个连续介质模型和一种数值方法来计算结合能，并将之作为结合点位置的一个函数，从而考察对结合亲合性的影响。当结合点位置处于非对称状态，即多肽侧侧方向移动时，距离异构体侧的距离可变时，在吸合同侧和吸同侧之间存在明显的结合自由能差，并引起亲合度的不同。这种与结合点位置的对称性相关的静电能差正是电压传输膜离子的通用特征。

关键词 离子跨膜 分子力学 活性输运 非对称静态模型

有许多特殊蛋白质用于离子跨膜的移动[1-3]。利用 ATP 作为能源，这些体系可以克服 3～4 个数量级大小的浓度梯度和自动地输送离子；另一方面，它们可以将离子的迁移同 ATP 的合成联系起来而获得化学势之能量。显然，弄清楚这些蛋白质构型的改变，使 ATP 水解所释放的能量转化为被输送离子所增加的自由能这一机理是很重要的[3]。

活性输运过程有两个基本特征：方向性和有效率。为使离子只沿着我们所期望的方向移动，该体系必须接纳来自膜一侧的离子，再将离子释放到另一侧。实验表明，在膜的吸合同侧释放侧具有更高的离子结合亲合性。理论处理也表明这一区别与最大输运速度有关[4,5]。对于最大有效率，离子结合到膜吸同侧和释放侧的亲合性差，应该同离子在膜两侧的浓度差所引起的化学势差一致[5]

在最初的活性输运模型中[6,7]，通过交替地将离子结合腔朝膜的不同侧打开，以使离子吸同和释放来控制离子移动的方向性，但没有明确指出在吸合同侧和释放侧间结合亲合性的差异。后来，Tanford 提出一个更精致的模型[5]，该模型将离子在膜不同侧的结合点可接近性（Accessibility），同输出蛋白特定构型的改变联系起来。假定在吸合同侧结合点附近聚集着较多的负性基团，它们对正性离子有亲合力；在释放态蛋白质的构型改变使得由吸合同侧到释放侧结合点的可接近性发生变化，同时引起一些负性基团移开结合点，从而削弱了可接近性。在所有这些模型中[5,6,7]，都将结合点指在输出膜区，而且驱动能都来源于 ATP 水解作用。

郝鸣鸿等[8]研究了静态相互作用对离子活性输运的影响，即研究了关于打开通道入口和出口结合点位于非对称位置时，它们是如何影响结合常数的。利用几个假定可以估算自由电荷与电介质之间的相互作用能。

可以将蛋白质的内部模型作为一个低电介质，介电常数大约为 2～4，将离子通道看作穿过一种低电介质的水合孔道[9-11]。也可以把离子结合点模型成一个带电环，位于一个具有高介电常数的水合密胞腔，周围被水相和膜-蛋白相包围。目的是估算出在吸同态和释放态这些电荷作用所引起的电介质极化能，利用两种状态下的能差可以解释两种构型的结合亲合性差，因为离子的结合，中和了结合蛋白的带电基团，并且抵消了极化电荷。

正如 Lauger 所描述的[13]，对于活性输运存在两种极限模型：一种是低场模型，即假定通道足够宽且电导率大，以致输送膜电位产生的场强低，此时假定通道中的溶剂具有生理离子强度下水的介电常数和导电性质；另一种是高场模型，当通道非常窄时，导电率低，场强高，电
位沿着通道而降低。实验表明存在着高场类型的通道[12~14, 3]。

1 离子跨膜概念

细胞膜，作为离子在细胞内外两个水溶液之间移动的障碍物，是一个低极化率的区域，对于离子流动表现出很大的阻力。膜是一个薄(4~10 nm)的碳氢层，它划分介质为含有蛋白质的和水溶性物质的介质。K+，Na+，Ca2+等离子在细胞内和细胞外的浓度不同，从膜的一侧(化学势 μ1)吸进，而在膜的另一侧(化学势 μ2)高得多或低得多)释放出来。

(1) 当离子从高浓度一侧向低浓度一侧输运时，称为被动输运(Passive transition)，类似于自动扩散，这个过程不需要能量，为一自发过程，经过离子通道(Ion channels)而传输；

(2) 当离子从低浓度一侧向高浓度一侧输运时，称为主动输运(Active transition)，这个过程需要能量，经过离子泵(Ion pump)而传输。

构成膜的蛋白质是多肽链的折叠，相对于小离子膜可以看作无限大的介质。

2 离子跨膜输运的能量

离子不能自发地穿过膜，它需要能量来推动输运。离子跨过脂类膜而输运的主要能垒，就是为使离子从介电常数高的水相(εs≈80)移动到介电常数低的脂类膜相(εm≈2)中所需要的静电能。在给定的介质中，一个荷电粒子的主要能量是“自能量”(Self energy)或“荷电能量”(Charging energy)，它依赖于电荷量值、粒子大小，以及其周围介质的结构和极化率。在无限的均匀介质中，电荷为 q、半径为 a 的球形导电粒子的自能量可表示为(Born 荷电能):

$$E = \frac{q^2}{2 \varepsilon a},$$

这个能量相当于离子在外界电场中所贮存的能量。对于离子大小的微粒，水合介质和碳氢介质中的自能量差值为

$$\Delta E = \frac{q^2}{2a} \cdot \left(\frac{1}{\varepsilon_s} - \frac{1}{\varepsilon_m} \right).$$

这里，ΔE 约为几十或几百个 kJ/mole.

由于不同相的介电常数不同，离子从水相到膜相的能量很高，当有离子通道或离子泵时，能量将大大地降低。

Parsegian[9]估算了膜厚度、离子对的形成、“微孔(Pores)”和“载体(Carrier)”对离子能量的影响，表明只有“微孔”和“载体”能显著地降低能垒，对于半径为 0.3 nm 的无限长水合微孔，其能量为 16 KT。Levitt[10]计算出单粒子、双粒子或三粒子在通过脂质类膜的水合通道时的静电能，说明对于位于通道长 2.5 nm 的粒子，能量为 6.7 KT，而且该能量是离子位置的函数。对于位于通道两侧的双粒子，其静电能是小的，而对于任何位置的三粒子则都是大的。为便于
入手，这可化作一个等价问题来解决，即获得一个适当的表面电荷放置在溶液区域与水合区区域之间的界面上，通过求体的偶合积分方程组作数值解而获得表面电荷的大小。

离子通道的示意图如下图 1 所示。

体系的静电势由下面一组微分方程来描述：
区域 1(水相)：$$\nabla^2 \phi_1 = -(4\pi q/\varepsilon_1) \delta(0),$$ (3)
区域 2(脂相)：$$\nabla^2 \phi_2 = 0,$$ (4)
离子移动时，在水-脂界面上的边界条件要求：
静电势：$$\phi_1 = \phi_2,$$ (5)
静电场(垂直于膜表面)：
$$\varepsilon_1 (\partial \phi_1 / \partial n) = \varepsilon_2 (\partial \phi_2 / \partial n).$$ (6)
$$\phi_1, \phi_2$$ 包括非极化电荷产生的静电势(即离子产生的静电势)$$\phi$$ 和极化电荷产生的静电势，$$\partial \phi / \partial n$$ 为静电势在法向的导数，可以写作两项贡献之和：
$$\frac{\partial \phi_1}{\partial n} = \frac{\partial \phi'}{\partial n} \frac{2\pi a(s)}{\varepsilon_1} + \frac{\partial \phi_2}{\partial n} = \frac{\partial \phi'}{\partial n} + \frac{2\pi \sigma(s)}{\varepsilon_1},$$ (7)
其中 $$\sigma(s)$$ 为极化电荷密度。

将方程(7)代入方程(6)，解得表面极化电荷密度的表达式：
$$\sigma(s) = \frac{\varepsilon_1 \varepsilon_1 - \varepsilon_2}{2\pi \varepsilon_1 + \varepsilon_2} \frac{\partial \phi}{\partial n} \quad (\varepsilon_1 > \varepsilon_2),$$ (8)
$$\phi$$ 是离子及那些不在 $$s$$ 点上的极化电荷在介质表面 $$s$$ 点上产生的静电势。

3 极化势

令水相(标记为 $$a$$)、蛋白质与膜内部($$m$$)以及结合腔($$c$$)的介电常数分别为 $$\varepsilon_a, \varepsilon_m$$ 和 $$\varepsilon_c$$，表面电荷密度 $$\sigma(s)$$ 可由边界条件导出：
$$\sigma_{ma}(s) = \frac{\varepsilon_c (\varepsilon_a - \varepsilon_m)}{2\pi (\varepsilon_a + \varepsilon_m)} E_n(s),$$ (9a)
$$\sigma_{cm}(s) = \frac{\varepsilon_c (\varepsilon_n - \varepsilon_c)}{2\pi (\varepsilon_n + \varepsilon_m)} E_n(s),$$ (9b)
$$\sigma_{ca}(s) = \frac{\varepsilon_c (\varepsilon_a - \varepsilon_c)}{2\pi (\varepsilon_a + \varepsilon_c)} E_n(s),$$ (9c)
$$\sigma$$ 的下脚标表示相互接触的两个相。

界面上 $$s$$ 点的法向电场 $$E_n(s)$$ 可表达为永久电荷和表面电荷密度 $$\sigma$$ 的函数：
$$E_n(s) = \frac{\partial \phi}{\partial n} \left[\sum_{i} \frac{q_i (r(s) - r(q_i))}{\varepsilon_c |r(s) - r(q_i)|^3} + \frac{1}{\varepsilon_c} \int_{s'} \frac{\sigma(s') |r(s) - r(s')|}{|r(s') - r(s)|^3} ds' \right],$$ (10)
其中 $$n$$ 是 $$s$$ 点指向表面外部的法向矢量，积分遍及所有的界面($$ma, mc$$ 和 $$ca$$)。方程(9)和(10)构成一对相互关联的积分方程，由此可确定表面电荷密度。得到 $$\sigma(s)$$ 以后，可按照库仑定律简单地计算出 $$r$$ 处的极化势 $$\Psi_r$:.
积分遍及所有的界面．当结合腔的介电常数不同于水的介电常数时，腔内的电荷也将存在一个自身能量项（Born 能），它与两种结合状态间的差别无关．

4 极化能对离子结合能的贡献

如图 2 所示，膜-蛋白可看作一个厚度为 \(H \) 的无限长活塞，结合点是一个半径为 \(r \) 的柱形井，结合离子的蛋白质结合基团被模拟为一个带电环，位于井底上方 0.1 nm 处，假定被结合离子装入环的中心．若被结合离子的电荷为 \(q \)，则环上总电荷为 \(-q\)．假定蛋白质构型的改变将引起膜两侧结合点的通道发生改变，但电荷的位置（蛋白质上的离子和带电基团）不变．图 2 中的 (a) 和 (b) 构型分别对应于 ATP 酶的 \(E_1 \) 态和 \(E_2 \) 态．此模型提供了一种确定结合点的非对称性对结合能中静电成分贡献的方法．

极化能依赖于结合腔的几何构型，特别是依赖于井的深度．把吸进态的结合常数标记为 \(K_1 \)，释放态的结合常数标记为 \(K_2 \)，则这两种状态下极化能对结合常数的贡献，可以由下式与其他贡献分离开：

\[
\ln \left(\frac{K_1}{K_2} \right) = \ln \left(\frac{K_{\text{out}}}{K_{\text{in}}} \right) - \frac{\Delta \Delta \psi}{RT},
\]

其中 \(K_{\text{in}} \) 和 \(K_{\text{out}} \) 是不存在极化作用时两种状态的结合常数；\(\Delta \Delta \psi \) 是两种状态的极化能差值，可写作

\[
\Delta \Delta \psi = \Delta \psi_{\text{out}} - \Delta \psi_{\text{in}},
\]

这里 \(\Delta \psi \) 是在一种构型下的极化能．

对于大分子体系，由静电学的宏观处理可以获得极化能 \[^{18} \]，在给定一组约束条件下解出整个体系的静电势，从总势能中扣除均匀参考介质中永久电荷所产生的势能，即得极化势．为获得极化势可想象一种连续带电过程，设非电介质的极化对于电场存在线性响应关系，则极化能可表为

\[
\psi = (1/2) \sum_i q_i \Psi_p (r_i),
\]

这里求和遍及体系中所包含的所有永久电荷 \(q_i \)；\(\Psi_p (r_i) \) 是第 \(i \) 个电荷处的极化势．为了得到极化能对蛋白质中离子结合能的贡献，应该分两次解出极化势：一次不存在离子，另一次有离子，两种情况的极化能差值即为对结合自由能的极化贡献，标记为 \(\Delta \psi \)．

即使采用这种简单的几何构型，求解仍然太复杂．因此，可用形式电势法 \[^{10, 18} \] 计算极化能．此法基于这样一种设想，即把非均匀体系中的静电学边界问题模拟成一个均匀体系，使在不同电介质间的界面上有一个合适的表面电荷密度（形式电荷）分布，一旦获得这些形式电荷密度，则极化能简单地为具有该形式电荷的永久电荷所产生的相互作用能的一半，从而可以按
照库仑定律直接计算出该能量项。由于被模拟体系是均匀的，所以极化能对离子结合的贡献，可以方便地由静电势的加和性作计算：令 \(q_i \) 表示被结合离子的电荷；\(q_i (i = 2 \sim m) \) 为结合离子蛋白质的基团电荷；\(\Psi_{p_1} \) 为 \(q_1 \) 的极化势，\(\Psi_{p_2} \) 为蛋白质带电基团的极化势。这样

\[
\Delta w = (1/2) q_1 (\Psi_{p_1}(r_1) + \Psi_{p_2}(r_1)) + (1/2) \sum q_i \Psi_{p_1}(r_i).
\]

（14）

蛋白质荷电基团与其自身极化势的相互作用能，\(\sum q_i \Psi_{p_1}(r_i)/2 \)，对离子结合到蛋白质的结合能，或者在吸进态和释放态的离子结合亲合势差没有贡献。由方程（14）计算的能量代表水相介质将离子由远距离无限长的距离处带到结合点时所做的功，结合常数可以由该能量计算出来。

5 数值计算

可用一种迭代方法来解出界面电荷密度。由初始推测值，反复使用方程（9）和（10）计算电荷密度，直到电荷密度收敛于正确值为止。Levitt[9] 使用的“平均函数修正”法[19] 对于计算达到收敛非常有效，以此可解出离子跨膜输运的能量。

为了使计算简化，将结合离子蛋白质基团的电荷考虑为分布于膜相中的一个环上，位于圆柱形腔底部的上方 0.1 nm 处、离腔边缘 0.05 nm。环上总电荷与被结合离子的电荷数值相等、符号相反，以保证电中性。被结合离子位于环的中心，因此体系具有圆柱形对称性。由于这种对称性使得分析简化为一维问题。我们只需要找出沿 x 路径的电荷密度 \(\sigma(x) \)，其中 x 通道自井底中心，沿半径向外延伸到井的边缘，再沿井边向上到膜表面，然后半径朝外远离井。为完成数值计算，井底部表面沿径向被分成 0.03 nm 的间隔，井边缘表面被分成 0.1 nm 间隔，而把膜-蛋白的顶部表面和底部表面先分成 0.05 nm 间隔，共 10 段，然后分成 0.1 nm 间隔，共 10 段，接着分为 0.8 nm 间隔，共 20 段。略去远离结合腔的界面效应。

6 由上述模型得出的一些结果

6.1 极化能

图 3 画出井深为 2.8 nm 时空电荷的静电势。比较图 3(a) 和(b) 可见，库仑贡献较小，势能图主要反映极化贡献，这是由于水的高介电常数所致。因此阳离子与蛋白质的相互作用能主要受极化效应所支配。

由方程（14）可知，离子结合极化能包括 3 部分：

1) 被结合离子在其自身极化场作用下的能量：\(w_1 = (1/2) q_1 \Psi_{p_1}(r_1) \)；

2) 离子在蛋白质荷电基团极化场中的能量：\(w_2 = (1/2) q_2 \Psi_{p_2}(r_1) \)；

3) 蛋白质荷电基团在离子极化场中的能量：\(w_3 = (1/2) q_2 \Psi_{p_1}(r_1) \)。

静电相互关系要求 \(w_2 = w_3 \)，这样就提供了一种估算本近似方法的数值精确性的可能性。图 4 画出离子结合极化能的这些成分，它们是结合腔深度的函数。若荷电环半径是 0.25 nm，则在 \(w_2 \) 和 \(w_3 \) 中存在约 10% 的偏差。

能量分布图表明，由膜表面到结合点的距离呈现特征的非对称性，因为井只朝向膜的一侧敞开。如果离子与带电环完全处在膜的外面，并且膜是扁平的而没有任何腔，则可利用形式电荷方法简单地计算极化能：

\[
\Delta w = \left(q^2/\varepsilon_0 \right) \left(1/(2d) - (r^2 + (2d)^2)^{-1/2} \right),
\]

（15）
图 3 膜内水相井中单位点电荷的极化势等高线图

以 2RT 为间隔，H = 5 nm, r = 0.3 nm, h = 2.8 nm, 电荷位于井底上部 0.1 nm 处，示膜与井的表面。

・示固定点的位置，(a) 总势能，是库仑贡献和极化贡献的总和；(b) 极化能

这里，d 是离子到膜表面的距离；r 是环电荷的半径，离子位于环的中心。当 d 大于 2r 时，则不论结合物在井外还是在膜外，Δw 都是负值。在更为精细的模型中（图 4），极化能的数值随着井尺度的增加而单调地增大，直到井足够深以致于对膜其余表面的极化作用开始生效为止。之后，极化能的数值将再次降低，且该曲线的拐点恰好越过膜的中点，表明了曲线的非对称性。

极化能依赖于结合腔的半径，图 5 比较了井半径分别为 0.3, 0.4 和 0.5 nm 三种不同情况下腔内离子结合的极化能。当通道半径由 0.3 nm 增加到 0.5 nm 而膜厚度保持不变时，最大极化能的数值由 12.9 RT 下降为 7.4 RT，后者预示着一个大小为 1.6 × 10^9 的结合常数。

由于膜内嵌入输运蛋白质后，其真实构型并不如体面的模型，因此在考虑具体真实的膜内情况时，已知 SR Ca^{2+} 泵是一种非对称形式嵌入膜内，具有类似星形的柱，头部顶在膜细胞（吸进）侧。经考察各种典型的构型发现，最主要的蛋白质是蛋白质的总厚度。可设柱直径至少是 1.0 nm, 对于 SR Ca^{2+}-ATP 酶的柱和输运膜区的构型，可以舍去头部，以便使通道不穿过整个蛋白质，但入口接近柱与头的接合处，由一种圆柱形蛋白质构成。其中一端与膜释放侧的平面同高度，另一端位于吸进侧膜表面的上方，凸出 2.0 nm（见图 6 中插图）。选取离子结合井的半径为 0.3 nm，考察圆柱形蛋白质的外径 R 为三种不同数值，即 R = 0.5, 1.0 和 2.0 nm 的情况，这些数值覆盖了适合于 SR Ca^{2+}-ATP 酶柱部的范围。图 6 显示对点电荷计算得到的极化能 w，它作为结合点位置的函数。

图 4 单位点电荷 (q = 1) 与模型结合点的电荷（用一个均匀电荷环来表示）(q = -1) 相互作用的极化能

・示 w1；当环半径为 0.25 nm 时，」示 w2，□示 w3，其差值约 10%；当环半径为 0.20 nm 时，w2 与 w3 曲线几乎完全相合
图 5 膜厚度为 5 nm, 不同结合井半径时，
单价离子结合能的比较

图 6 结合能对输运蛋白几何构型的依赖性
插图结构图中, $r_c = 0.3 \text{ nm}$, R 是圆柱形蛋白的外径。
蛋白质的顶部位于膜表面以上 2.0 nm 处, $H = 3.0 \text{ nm}$

与图 4 结果比较可知, 若蛋白的外径小时 (即 $R = 0.5 \text{ nm}$), 则极化能随着结合点厚度
的改变而明显地缓和; 然而, 若 R 大于 1.0 nm, 则在这样的构型中, 极化能变得更接近于均匀
厚度为 5.0 nm 构型的极化能。事实上, 当 $R = 2.0 \text{ nm}$ 时, 两种模型几乎等同。可见; 只要输运蛋白柱部的外径不是太小, 蛋白质在膜任一侧的伸出都将简单地使有效膜厚度增大, 结合
点的深度可看做该点到入口通道平面的距离, 而不是从膜表面测量的距离。

关于井内介电常数变化的影响: 由于通道内水分子的介电常数受束缚特性, 水分子的介电常数
可能永远小于大块水的介电常数。作为一种试
探, 假定结合腔的介电常数 ε_c 取为 40, 即介于膜
和大块水的介电常数之间, 则体系有 3 种介电区域
组成。对这样一个体系计算所得的结合极化能
在图 7 中示出。膜厚度为 5.0 nm, 极化能在 $r =
0.3$ 和 0.4 nm 处的极小值分别是 -9.3 RT 和
-7.0 RT; 如果相对于大块水腔内的介电常数降
低 50%, 则极化能约下降 20% ~ 30%。

6.2 两种输运状态间的极化能差值

以上计算表明, 极化能关于结合点在膜中的
位置呈现出特征的非对称分布。如果通向结合点
的入口由膜的一侧换到另一侧, 而电荷位置在构
型改变时维持不变 (图 2), 则预期结合能将突变
为一个不同的数值, ATP 的水解能量可能驱动这一构型变化, 这两种状态间的极化能差值, 决定
了吸进态和释放态下离子的相对结合亲合势, 而两种构型间的极化能差的大小由结合点的
位置决定。用 h_i 定义结合点到吸进侧膜表面的距离，h_0 为结合点到膜另一侧表面的距离 (图 2)，假设构型由 E_1 态变成 E_2 态的过程中，结合点的位置明显发生变化，以致于 $H = h_i + h_0$，这两种状态的非对称性用比值 $\lambda = h_i / H$ 来衡量。$\lambda = 0.5$ 表示离膜两侧等距离的一个点，$\lambda > 0.5$ 表示这个点更接近膜的释放侧，极化能差由下式计算：

$$\Delta \Delta w = \Delta w(h_0) - \Delta w(h_i).$$ (16)

图 8 示出在吸进态和释放态对结合点单价阳离子计算的极化能差，它作为非对称因子 λ 的函数。结合基团的总电荷再次取作 -1，蛋白-膜的厚度取为 5.0 nm。模拟的结果表明：

1. 结合自由能的差值随着非对称比值有一个定向的增大，对于 $\lambda < 0.9$，$\Delta \Delta w$ 随着 λ 值的改变接近于线性的；$\Delta \Delta w = B(\lambda - 0.5)$，其中 B 是一个常数，对于图 8 中的曲线 1～4，常数 B 各为 14.9, 11.8, 8.5 和 7.5 RT。

2. 两种输运状态间的结合能差值，相对于单一构型的极化能，更少地依赖于结合点的半径。

3. 降低结合腔的介电常数，使得两种输运状态间的结合能差减小，对于曲线 1～4，结合能差的最大值分别为 5.6, 4.4, 3.5 和 2.9 RT，当通道半径为 0.3 nm，$\varepsilon_r = 20$ 时，结合自由能差大约是 2 RT；当有相同的通道半径，而 $\varepsilon_r = 10$ 时，结合自由能差约为 2 RT。

(4) 结合自由能差对井内介电常数的敏感性，比结合自由能对个别位点的敏感性要小一些，若结合点的位置非常不对称，则最大结合自由能差大约位于穿过膜 90% 的路径处。假定结合基团的总电荷与被结合离子的电荷数值相等，符号相反，即整个结合物中的电荷为零，则对于一个 q 价的离子，结合自由能差将成为 $q^2 \Delta \Delta w$，这里的 $\Delta \Delta w$ 是单价离子的结合自由能差。这表明对于多价离子，由于结合点的非对称性，输运蛋白可能产生比单价样品更大的自由能差。

7 结论

实验结果指出：在肌浆内质网 Ca$^{2+}$-ATP 酶中，吸进态和释放态间的结合自由能差约为 20 kJ/mol (~ 8 RT)；而 ATP-驱动的 Na$^+$ 和 K$^+$ 泵，结合自由能差约为 8～16 kJ/mol (3～7 RT)。理论分析是：假定膜厚度为 5.0 nm，结合腔的半径约 0.3～0.4 nm，井内的介电常数与大块水的介电常数相等。由图 8 可得，非对称因子为 0.7 时，将在两种输运态 ($q = 2$) 间产生 10 RT 的结合能差，据此可估算 SR Ca$^{2+}$ 泵在 E_1 和 E_2 两个状态间所观察的结合亲合势之差。对于 Na$^+$ 和 K$^+$ 泵，非对称因子为 0.8 时达到一致。甚至当介电常数为大块水的介电常数的一半时 ($\varepsilon_r = 40$)，结合点非对称所引起的结合能差仍然相当接近于实验观测值。这表明极化能差唯一地与观察到的自由能差相一致。产生以上结合亲合势差值的原因，与离子穿过离子通道所产生的势垒相类似，亦即，和离子电荷与膜相互作用的极化能 $^{[10, 11]}$ 相类似。但在活性输运情况下，极化能差常用来加速离子的输运。
郝鸣鸿等人[8]的工作还指出：如果极化效应在 ATP 水解的有效偶合中，对活性输送是一个主要因素，则吸进通道必定比释放通道要深得多。

离子跨膜输运的机理，可能包括两个输运蛋白截然不同的结构状态，对输运离子的结合点朝向膜的相反侧。Tanford[8]对于一个为促使势能改变而设计的蛋白质分子提出了一个简单的结构模型，该结构很好地适合于两种构型之间的转换替代，它们的取向不同且对离子的结合亲合力不同，而又不要求解开螺旋或更替结构中的其他部分，如图 9 所示。

构型的改变只影响到氨基酸侧链的排列，该模型清楚地表示了 ATP-驱动的 Na+，K+ 和 Ca2+ 泵的 E1 和 E2 状态。

由于模型的简单性，使之具有较为广泛的适用性，如当设定不同的离子电荷 q，吸进腔半径以及不同介质的介电常数、通道深度、膜厚度等时，可将这一理论推广到其他价态离子和其他介质条件下的跨膜，如对与三价稀土离子跨膜行为的研究，这一工作我们正在进行中。

致谢 本工作为国家自然科学重点基金（批准号：29471018）资助项目。

参考文献
15 MacLennan D H. Molecular tools to elucidate problems in excitation-contraction coupling. Biophys J, 1990, 58: 1355
17 Asturias F J, Blasie J K. Location of high-affinity metal binding sites in the profile structure of the Ca2+-ATPase in the sarcoplasmic reticulum by resonance X-ray diffraction. Biophys J, 1991, 59: 488
18 Jackson J D. Classic Electrodynamics. 2nd ed. New York: John Wiley and Sons, 1975

(1997-06-16 收稿, 1997-11-10 收修改稿)